

«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Девятая международная научно-техническая конференция «Безопасность, эффективность и экономика атомной энергетики»

Разработка и усовершенствование ядерного топлива для активных зон энергетических установок

Авторы: П.И. Лавренюк, А.Б. Долгов

Основные типы ядерного топлива для АЭС России

Эксплуатирующиеся АЭС

BB3P-1000

ТВС-2М (6 блоков)

TBCA-PLUS (4 блока) BB3P-440

Топливные кассеты 1-го (4 блока), 2-го (2 блока) и 3-го (1 блок) поколений

РБМК-1000

ТВС с уранэрбиевым топливом 2,8% обогащения с 0,6% эрбия (11 блоков) БН-600

Штатное топливо (1 блок)

Строящиеся и проектируемые АЭС

BBЭP-1200

> ТВС-1200 (6 блоков)

ВВЭР-

ТВС ВВЭР-ТОИ (КуАЭС-2 и САЭС-2) БH-800

ТВС с топливом из UO_2 и таблеточным МОХ-топливом (1 блок)

Задачи Топливной Кампании

Основные задачи, которые ставит ОАО «Концерн Росэнергоатом» перед ОАО «ТВЭЛ»:

- ✓ Обоснование работоспособности топлива для ВВЭР-1000 при мощности блока 104%Nном, а для ВВЭР-440 на 107%Nном;
- ✓ Обоснование работоспособности топлива для ВВЭР-1000 при мощности блока (107-110)%Nном;
- ✓Увеличение срока службы ТВС;
- ✓ Расширение эксплуатационных пределов;
- ✓ Повышение надежности ядерного топлива.

Все задачи решаются при БЕЗУСЛОВНОМ обеспечении безопасности

Ядерное топливо для ВВЭР-1000

TBCA-PLUS и TBC-2М обладают идентичными технико-экономическими характеристиками, обеспечивающими:

- ✓ возможность повышения мощности РУ до 104 % от номинальной
- √18-ти месячный топливный цикл (подпитка 66 шт.)
- √выгорание в твэле 72 МВт-сут/кгU
- ✓ возможность эксплуатации в маневренном режиме (100-75-100 % Nэл)
- **√**защиту от посторонних предметов

TBCA-PLUS

TBC-2M

Ядерное топливо для ВВЭР-1000 ТВС 4-го поколения

TBC-2M

12 ДР, ПР, АДФ, Топливный столб – 3680 мм, Унифицированная головка

TBCA-PLUS

АДФ, Топливный столб – 3680 мм

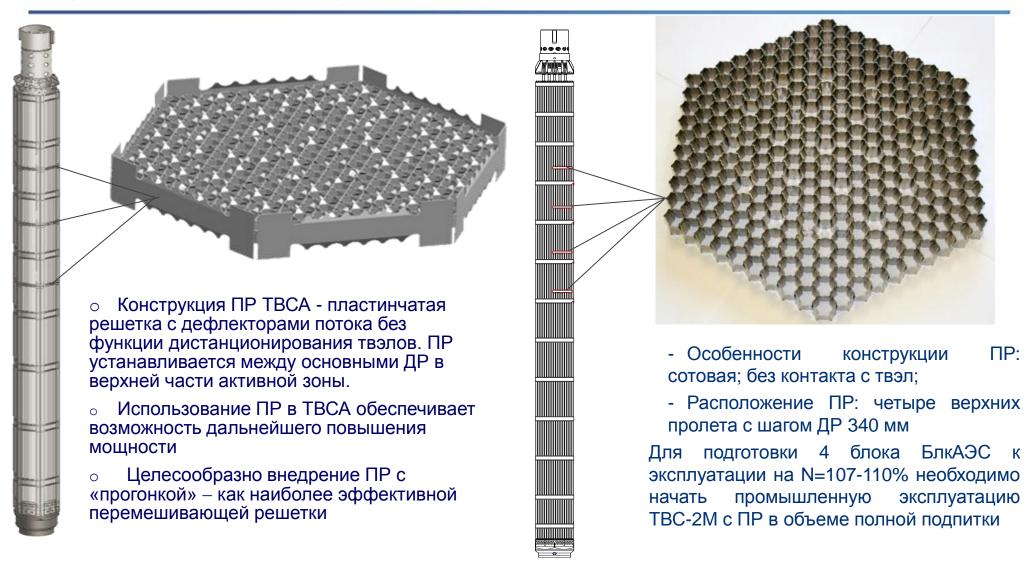
ТВСА-АЛЬФА

ПР, АДФ, таблетка ⊘7,8/0 мм

ТВС четвертого поколения

Унифицированная головка
12 ДР, ПР, АДФ
Топливный столб – 3680 мм
Таблетка Ø7,8/0 мм
Загрузка UO₂ - 568,4 кг
Топливный цикл 3х510 или 5х333
увеличение длительности кампании
на 8 %

или


сокращение ТВС подпитки на 10%

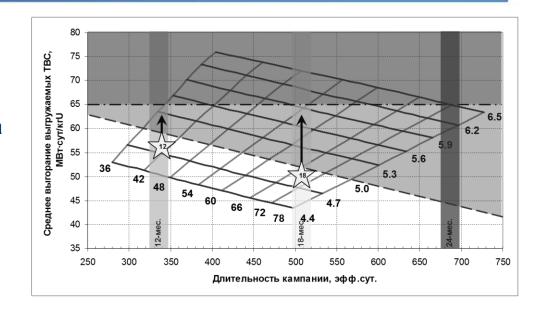
или

уменьшение обогащения подпитки на 7%

Ядерное топливо для ВВЭР-1000. Перемешивающие решетки

Ядерное топливо для ВВЭР-1200/ВВЭР-ТОИ

A3C-2006 нк 289 289 255 260 **> TBC-2M твэл ввэр тои 3680 340x10=3400 340×10=3400 3730 твэл **TBC-2006** ТВС-ТОИ


Основные параметры активных зон

Проект	ВВЭР-	ВВЭР-
Параметр	1200	ТОИ
Мощность РУ, МВт	3200	3300
Средняя температура на входе и на выходе из активной зоны:		
T _{BX.} , °C	298,1	297,2
Т _{вых.} °С	329,5	328,8
Количество ОР СУЗ, шт	До 121	94
Средняя линейная нагрузка , Вт/см	167	168
Максимальная линейная нагрузка , Вт/см	448	420
Высота ТВС, мм	4570	4570
Количество твэлов в ТВС	312	313
Высота топливного столба, мм	3730	3730
Масса топлива в ТВС, кг	466,4	471,7
Количество направляющих каналов	18	18
Расположение измерительного канала	боковое	ВНК
Количество ДР в ТВС	13	13
Высота ячеек ДР, мм	30	30

Перспективные разработки для проектов ВВЭР-1200/ВВЭР-ТОИ

✓ Использование топлива с обогащением по урану-235 до 7%:

- Уменьшение количества ТВС подпитки на 20%,
- Повышение среднего выгорания выгружаемого топлива на 20 25%,
- Уменьшение топливной составляющей себестоимости производства электроэнергии в сопоставимых циклах на 5% (эрбий) и 8% (гадолиний),
- Возможность реализации 24-месячных топливных циклов.
- Возможность эксплуатации в маневренном режиме (100-50-100) % Nэл.

✓ Применение уран-эрбиевого топлива:

- Снижение неравномерности энергораспределения.
- Повышение точности расчета распределения энерговыделения.

Ядерное топливо для ВВЭР-440

Топливо второго поколения

Обогащение 4,87%, таблетка 7.6/1.2 мм

Топливный цикл – 6-ти годичный при работе на уровне мощности 1471 МВт(тепл.)(107%).

Тип пучка твэлов - профилированный, U-Gd.

Кол-во кассет подпитки – 66 шт.

Выгорание - 65 МВт сут/кг U.

Работа в маневренном режиме.

В 2013 году переведена в промышленную эксплуатацию.

Ожидаемый эффект от внедрения – снижение ~15% количества кассет на перегрузку (в условиях работы реактора на мощности 107% от номинальной)

Топливо второго поколения

Обогащение 4.76%, таблетка 7.8/0 мм

Топливный цикл - 6-ти годичный.

 $Macca UO_2 - 135,5 кг$

Тип пучка твэлов - профилированный, U-Gd.

Кол-во кассет подпитки – 60 шт.

Выгорание - 65 MBт·сут/кгU

Работа в маневренном режиме.

Разработан технический проект в 2012 году

Ожидаемый эффект от внедрения – снижение количества кассет на перегрузку ~10% по сравнению с кассетами второго поколения с топливом 4.87% с таблеткой 7.6/1.2 мм.

Рабочая кассета третьего поколения Обогащение 4.87%, таблетка 7.8/0 мм.

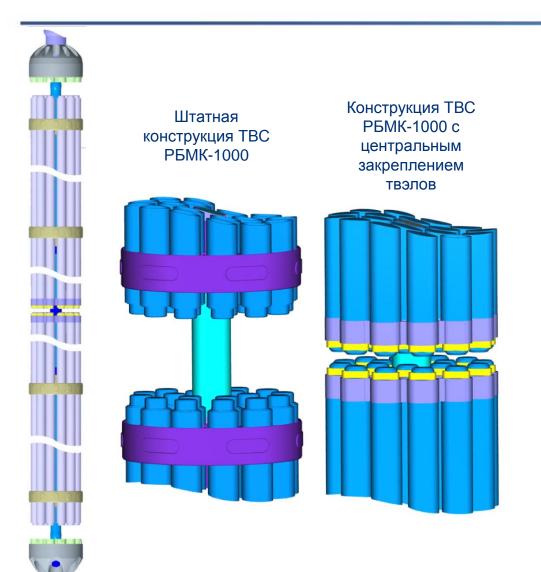
Топливный цикл - 6-ти годичный.

Бесчехловая конструкция с каркасом из уголков и труб.

Масса UO_2 - 132 кг (увеличена на 4.5%). Шаг твэлов – 12.6 мм.

Кол-во кассет подпитки – 60 шт.

Выгорание – до 68 МВт-сут/кгU.


Работа в маневренном режиме.

В 2010 году начата эксплуатация 12 шт. на блоке №4 Кольской АЭС

Ожидаемый эффект от внедрения РК-3 – снижение количества кассет на перегрузку ~10% по сравнению с кассетами второго поколения с топливом 4,87%

Ядерное топливо для РБМК-1000

На сегодняшний день штатной конструкцией для РБМК-1000 является ТВС с топливом 2,8% обогащения по урану-235 с содержанием эрбия 0,6%.

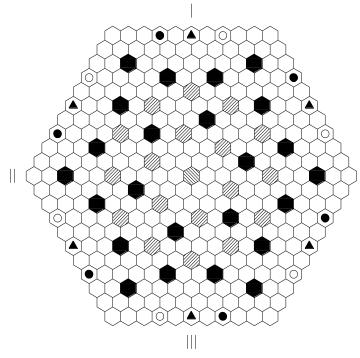
требований «Технического учетом задания на комплекс работ по управлению ресурсными характеристиками реакторных РБМК-1000» установок ранее обоснований наиболее выполненных перспективной конструкцией РБМК-ДЛЯ 1000 TBC является центральным закреплением твэлов C **ВЫСОТНЫМ** обогащения профилированием топлива (исключение просипи топлива и снижение флюэнса на конструкционные элементы РУ)

Расширение эксплуатационных параметров

Направления работ:

- ✓Профилированные твэги;
- ✓Лимитная кривая;
- ✓ Обоснование возможности реализации ОПРЧ;
- ✓Увеличение циклов нагружения;
- ✓Внедрение на ВВЭР-440 контроля активной зоны по локальным параметрам.

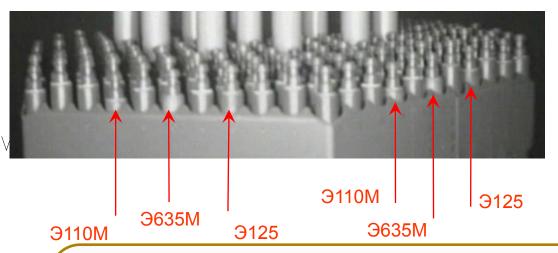
Требования к материалам для оболочек твэлов и элементов каркаса ТВС


- ✓ повышенное сопротивление ползучести;
- ✓ низкий радиационный рост;
- ✓ высокая коррозионная стойкость (толщина оксида < 60 мкм);
 </p>
- ✓ низкая степень наводораживания (< 400 ppm H);</p>
- ✓ стойкость оболочки к разгерметизации (РСІ и РСМІ).
- ✓ безусловное выполнение для оболочки твэла критериев проектных аварий (LOCA и RIA).

Новые разработки сплавов циркония

Сппор	Массовая доля легирующего элемента, %				
Сплав	Nb	Sn	Fe	0	
Э110	0,90-1,10	-	< 0,05	< 0,099	
Э110 опт.	0,90-1,10	-	0,025-0,07	0,06-0,099	
Э110M	0,90-1,10	-	0,07-0,15	0,10-0,15	
9125	2,4-2,7	-	< 0,05	< 0,099	
Э125 опт.	2,4-2,7	-	0,025-0,05	0,06-0,099	
Э635	0,9-1,2	1,10-1,42	0,30-0,47	0,05-0,12	
Э635M	0,7-0,9	0,7-0,9	0,30-0,40	0,04-0,10	

Шихтовая основа новых сплавов - губчатый Zr


Испытание новых материалов оболочек твэлов в условиях коммерческого реактора

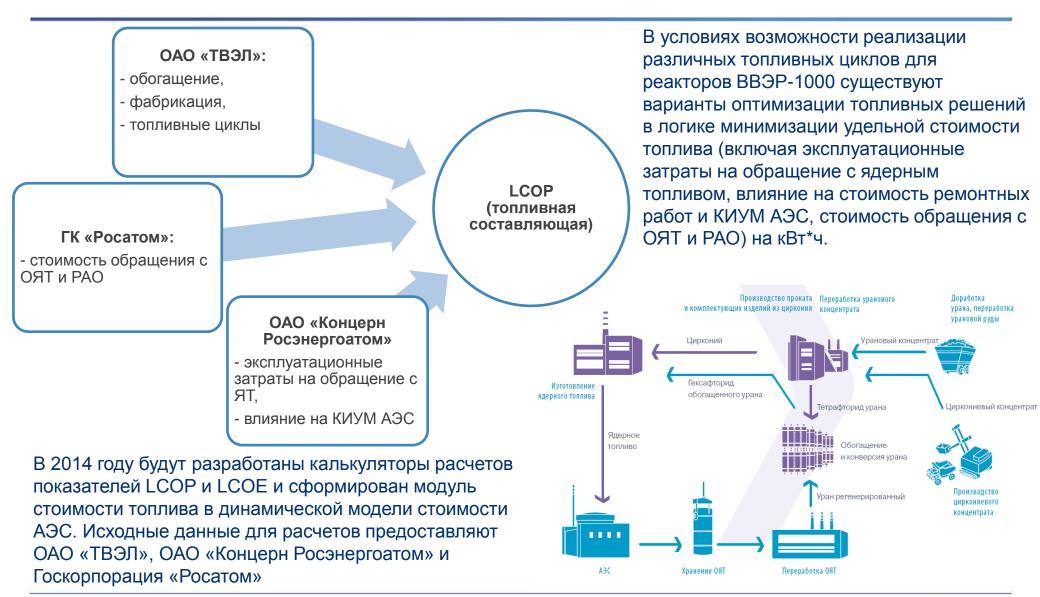
 $[\]langle \bullet \rangle$ — твэл с оболочкой из сплава $\exists 125$

Разработка сплавов Э110M, Э125опт, Э635M направлена на решение задач:

•повышения сопротивления радиационной ползучести и росту при сохранении коррозионной стойкости;

С целью подтверждения характеристик оболочек из данных сплавов в 2012 году установлены на опытную эксплуатацию три ТВС-2М с опытными твэлами на блоке №2 Балаковской АЭС.

Проект «Нулевой уровень отказа»


Основные итоги 2013 года:

- 1.Определена информация, необходимая для выполнения целей Проекта
- 2. Собрана и проанализирована статистика по отказам топлива
- 3. Разработано «Дерево отказов»
- 4. Выполнен анализ отчетов по послереакторным исследованиям ядерного топлива
- 5. Выполнен анализ достаточности информации по отказам, представленной в отчетах заводов-изготовителей
- 6. Выполнен анализ действующих требований Поставщика к условиям эксплуатации ядерного топлива

Основные задачи на 2014 год:

- 1. Оформление организационно-технических документов по Проекту «Нулевой уровень отказа» в пятистороннем формате
- 2. Проведение рабочих визитов на заводах-изготовителях ядерного топлива и комплектующих
- 3. Продолжение работ по выявлению тенденций и закономерностей отказов ядерного топлива и подготовка рекомендаций, направленных на достижение нулевого уровня отказов

Топливная компания ТВЭЛ в ЯТЦ

Заключение

- Сегодня ядерное топливо для энергетических реакторов конкурентоспособно и отвечает требованиям Заказчиков.
- Существует программа развития ядерного топлива на ближайшую перспективу, согласованная с ОАО «Концерн Росэнергоатом».
- Дальнейшее развитие ядерного топлива должно проходить с учетом стратегии обращения с облученным топливом.

Спасибо за внимание!