

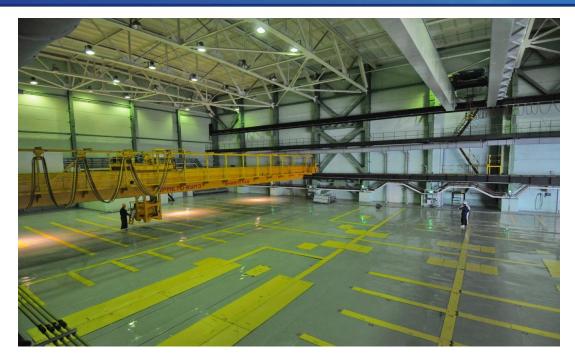
Государственная корпорация по атомной энергии «Росатом»

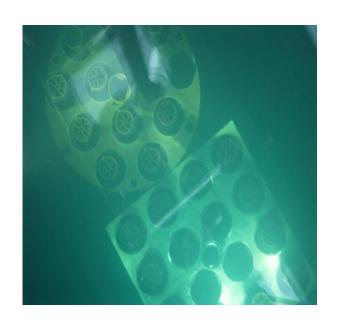
ФГУП «Горно-химический комбинат»

Безопасность и эффективность обращения с ОЯТ на ФГУП «ГХК»

Генеральный директор ФГУП «ГХК» доктор технических наук П. М. Гаврилов

Концепция развития ядерного топливно - энергетического комплекса


Концепция развития ядерного топливно-энергетического комплекса России направлена на замыкание ЯТЦ и реализуется по пяти основным направлениям:


- 1. Строительство энергоблоков с реакторными установками ВВЭР нового поколения.
- 2. Централизованное хранение ОЯТ до момента его переработки.
- 3. Создание парка реакторов на быстрых нейтронах, способного обеспечить развитие энергетики на быстрых нейтронах.
- 4. Создание крупномасштабного завода по переработке ОЯТ и фабрикации МОКС-топлива.
- 5. Создание пункта окончательной изоляции отвержденных ВАО.

Общий вид сооружаемого комплекса по обращению с ОЯТ на ФГУП «ГХК»

Водоохлаждаемое («мокрое») хранилище ОЯТ ВВЭР-1000

Характеристики хранилища:

Вместимость - более 8000 т по ОЯТ ВВЭР-1000;

Общее количество воды в системе охлаждения – 40000 м³;

Температура воды в отсеках - max 50 °C;

Наличие грузоподъемных механизмов;

Система резервных резервуаров для подачи охлаждающей воды.

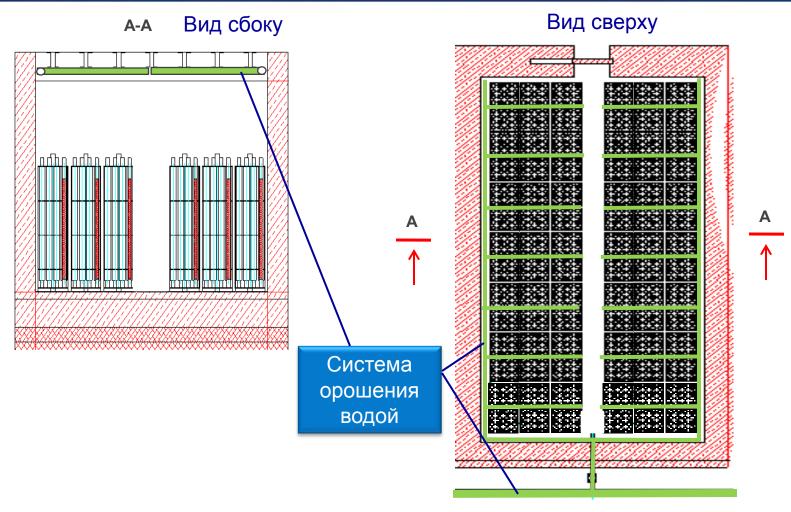
Схема обращения с ОЯТ реакторов ВВЭР-1000

Реконструкция «мокрого» хранилища

В результате реконструкции внесены качественные улучшения:

- ▶значительно повышена сейсмоустойчивость хранилища: усилен фундамент, строительные конструкции, облегчена кровля;
- ▶произведена замена кранов;
- увеличена производительность и надежность системы охлаждения.

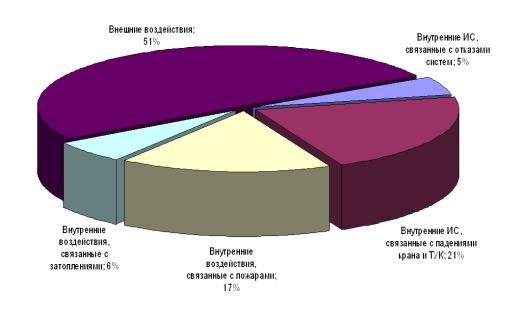
Детерминистский анализ безопасности «мокрого» хранилища ОЯТ


Анализ запроектных аварий с обезвоживанием отсеков «мокрого» хранилища выполнен на основе трехмерных моделей отсека хранилища с использованием современных программных комплексов для выполнения теплогидравлических расчетов (ANSYS, VIBROS2.1, CILINDR-KOMPLE и т.д.).

Определены эффективные меры по управлению запроектными авариями, включающие:

- орошение водой ОТВС аварийных отсеков;
- > надежное охлаждение неаварийных отсеков бассейна;
- надежная работа штатной вентиляции.

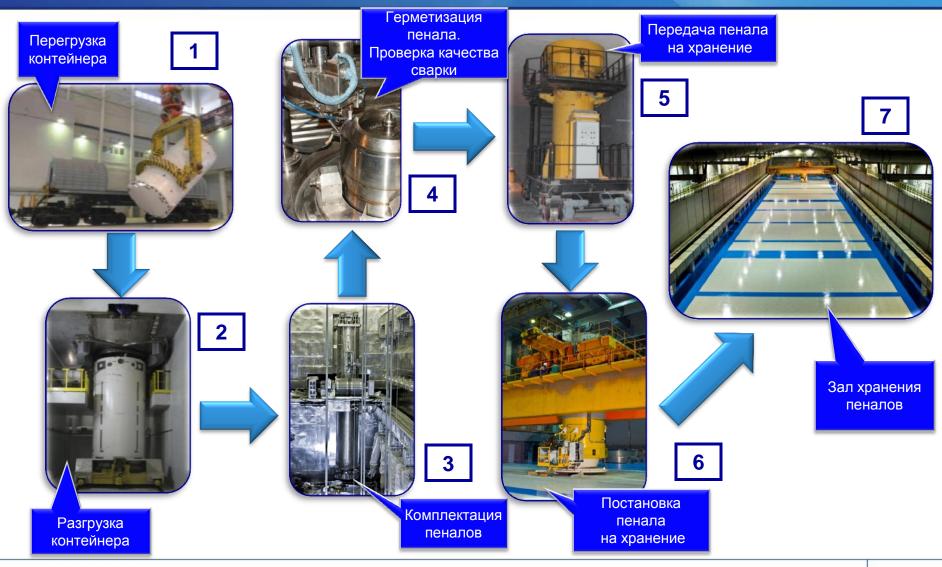
Наиболее эффективным способом снижение температуры оболочек ОТВС и бетонных стен является водяное охлаждение путем орошения, при этом температура оболочек не превысит 550°C, стен до 50°C.


Аварийная система орошения отсека хранения «мокрого» хранилища ОЯТ

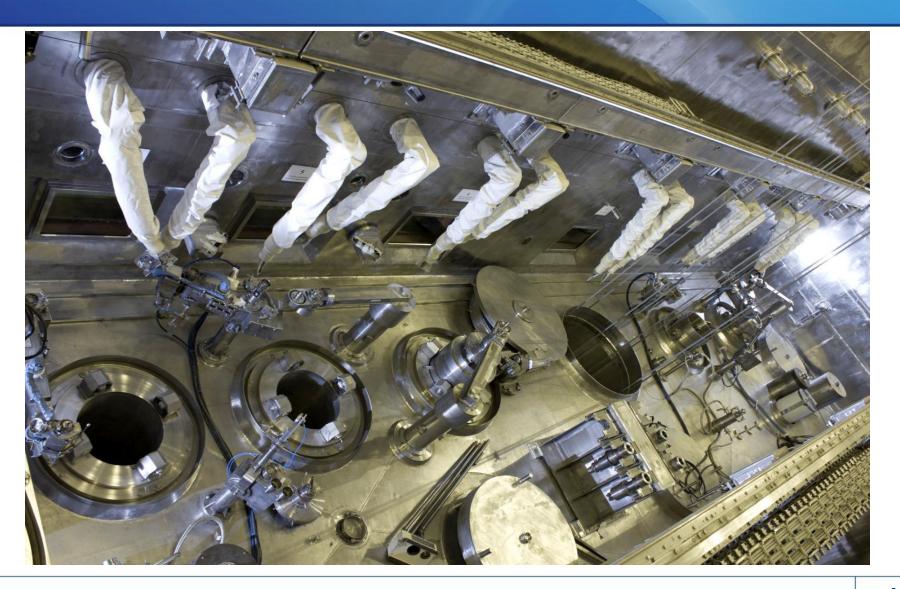
Требуемый расход воды на орошение одного отсека - 20 м³/ч.

Результаты вероятностного анализ безопасности «мокрого» хранилища ОЯТ

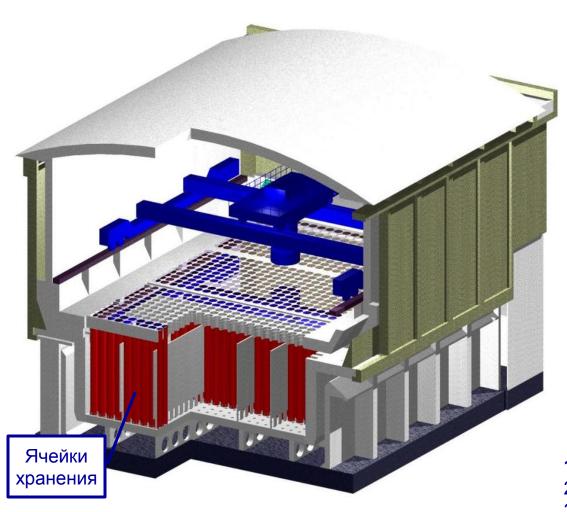
Внешние воздействия	4.5E-07
Внутренние ИС, связанные с падениями крана и ТУК	1.9E-07
Внутренние воздействия, связанные с пожарами	1.5E-07
Внутренние воздействия, связанные с затоплениями	5.4E-08
Внутренние ИС, связанные с отказами систем	4.5E-08
ВСЕГО	0.9E-06

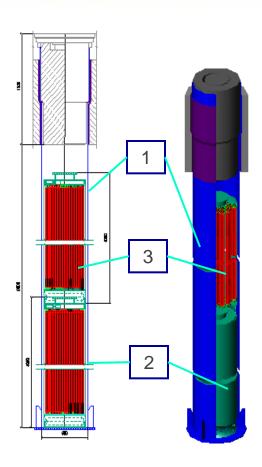

Результаты свидетельствуют о соответствии уровня безопасности нормативному критерию обеспечения безопасности ОИАЭ

Общий вид «сухого» централизованного хранилища ОЯТ реакторов РБМК-1000



Проект «сухого» хранилища прошел международную экспертизу в компании SGN (Франция). Предложения, указанные в экспертном заключении, учтены при сооружении хранилища.


Схема постановки ОЯТ на «сухое» хранение



Горячая камера «сухого» хранилища

Продольный разрез модуля воздухоохлаждаемого хранилища ОЯТ, ячейка хранения

- 1- ячейка хранения;
- 2 –пенал заполнен газом (N_2 + He_2);
- 3 пучок твэлов сборки.

Параметры безопасного «сухого» хранения ОЯТ

	РБМК-1000	BBЭP-1000
Среда охлаждения	наружный воздух	наружный воздух
Среда хранения	N ₂ +He ₂	N ₂ +He ₂
Температура наружного воздуха, °С	+38	+38
Температура воздуха на выходе из камеры, °С	+94	+94
Температура на поверхности гнезда, °С	+145	+147
Максимальная температура оболочек твэлов, °C	+248	+308

Вероятностный анализ безопасности «сухого» хранилища ОЯТ

Система	Инициирующие события	Вероятность отказа, год ⁻¹
Внешние	Сейсмическое воздействие силой 8 баллов по шкале MSK-64	2.10-4
события	Падение самолета	1,37·10 ⁻¹³
Внутренние события	Падение пенала	1,23·10 ⁻⁴
	Падение ампулы с пучком твэлов в горячей камере	4,47·10 ⁻¹

При выполнении вероятностного анализа безопасности было установлено, что наиболее вероятны инциденты, связанные с перегрузкой пеналов и ампул.

Анализ показал, что все эти события не приводят к выходу радиоактивности в окружающую среду.

Crash-test для «мокрого» и «сухого» хранилищ ОЯТ

Проведен расчет на предельную сейсмическую устойчивость строительных конструкций и оборудования «мокрого» и «сухого» хранилищ ОЯТ. Максимальное сейсмическое воздействие для площадки размещения хранилищ 7 баллов по шкале MSK-64.

«МОКРОЕ»

Строительные конструкции «мокрого» хранилища сохраняют целостность до 8,0 баллов по шкале MSK-64. В случае отключения энергоисточников и разгерметизации 4 бассейнов выдержки в течение 72 часов будет обеспечено охлаждение ОЯТ обеспечивается за счет системы орошения, куда поступает самотеком поступает вода из аварийных резервуаров.

«СУХОЕ»

Строительные конструкции «сухого» хранилища сохраняют целостность до 9,6 баллов по шкале MSK-64. В случае отключения энергоисточников отвод тепла от ОЯТ обеспечивается за счет естественной конвекции охлаждающего потока воздуха.

Опытно-демонстрационный центр

- •Отработка в опытно-промышленном масштабе инновационных технологий переработки ОЯТ.
- •В основе технологии переработки ОЯТ лежит усовершенствованный PUREX-процесс.
- •Используется процесс волоксидации ОЯТ, что позволяет локализовать на начальной стадии 99,9% трития и гарантирует отсутствие образования ЖРО и сброса трития в окружающую среду, в отличие от всех известных мировых и отечественных аналогов радиохимических заводов.

Производство таблеточного МОКС-топлива для реактора БН-800 Белоярской АЭС

- Полностью находится в подгорной части ГХК, горная порода является естественным контайнментом.
- Все оборудование размещается в цепочке горячих камер и боксов.
- Все технологические операции максимально автоматизированы с использованием дистанционного управления.
- Использование передового международного опыта по обращению с рециклированными делящимися материалами.

Заключение

Всеобъемлющее повышение безопасности хранения ОЯТ обеспечивается путем:

1. Вывоза ОЯТ с площадок АЭС и размещения в объектах централизованного хранения.

2. Использования пассивных систем отвода тепла («сухие» хранилища).

- 3. Применение многобарьерных систем изоляции ОТВС в герметичных пеналах и узлах хранения.
- 4. Созданием систем для управления запроектными авариями и локализации их последствий.

Для дальнейшего повышения безопасности при обращении с ОЯТ целесообразна переработка ОЯТ и

